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Using the random patch model, the effects of interaction between and mobility of adsorbed 
molecules have been accounted for in a straightforward manner. For considering surface heteroge- 
neity four widely accepted site energy distributions are used. Expressions for selectivity and rates 
are derived as a function of pressure, with finite limits of heats of adsorption. For the case of 
localized adsorption with interactions the Fowler-Guggenheim model and the quasi-chemical ap- 
proximation model are considered, both for the square and the hexagonal lattice. Mobile adsorp- 
tion with interaction is analyzed using an isotherm similar to the Hill-deBoer model. An approxi- 
mation method called the condensation approximation is employed to estimate mean surface and 
mean squared surface coverages and compared with the exact numerical method. The condensa- 
tion approximation is good (1% deviation) for calculating the mean surface coverage, but is only 
partially successful for determining the mean squared surface coverage (5% deviation). Methods 
are given for determining the characteristic pressure at which a desired selectivity is obtained. The 
Fowler-Guggenheim model and the quasi-chemical model predict nearly identical characteristic 
pressures. For the case of mobile adsorption, values of characteristic pressure are much lower 
when compared with the localized model. We investigate the relationship arising between the 
activation energy of surface reaction and heat of adsorption as a consequence of the Polanyi- 
Bronsted relationship assumed to exist between activation energy and enthalpy change for an 
elementary step. The pressure-dependent parts of the rates show appreciable fall compared to the 
case when statistical independence is assumed between the activation energy and the heat of 
adsorption. Besides, the characteristic pressure gets shifted to higher values. The analysis pre- 
sented can be applied to a simple reaction scheme (alcohol dehydration) as well as a more complex 
scheme such as that involved in catalytic cracking and disproportionation reactions. 

INTRODUCTION 

Although the effects of interaction be- 
tween and mobility of adsorbed molecules 
have been taken into account in the theo- 
ries of adsorption (Z-4, 7-10, Z3), there are 
only a few studies which explicitly account 
for their influence on catalytic rates and se- 
lectivity (5-7). It is well known that the 
functional forms of the theoretical iso- 
therms are totally different from the ideal 
Langmuir form when nonidealities like sur- 
face heterogeneity and interactions (Z-5, 
8-12, 13-16) are considered in the adsorp- 
tion model. A rigorous incorporation of the 
effects of surface heterogeneity is yet to be 
done (4, 10). 

i To whom correspondence should be addressed, 
NCL Communication No. 3220. 

The basis of the formulation is the ran- 
dom patch model in which the surface is 
visualized as an assemblage of randomly 
distributed patches (miniature uniform sur- 
faces) with adsorption equilibrium prevail- 
ing between gas and the surface phases. 
For localized adsorption with interaction, 
the Fowler-Guggenheim (3, 7-9) and the 
quasi-chemical isotherm (7-9) are used to 
describe the adsorption on an individual 
patch (denoted as the local isotherm). For 
treating mobile adsorption a model resem- 
bling the Hill-deBoer isotherm is em- 
ployed. 

A simple reaction scheme, which makes 
the methods of one-component adsorption 
theory applicable, is analyzed to illustrate 
the roles of interactions and surface hetero- 
geneity. 
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Four well-known site-energy distribu- zero. Also, it is assumed that adsorption 
tions are considered in the present work. and desorption constants of A are large 
The limits of heats of adsorption are chosen compared with the kinetic constants for the 
in accordance with the Balandin valcano surface reactions. This scheme has the ad- 
principle (17) and also such that the desorp- vantage that only concentration terms in- 
tion will be much faster than the surface volving one component e,, c are involved 
reaction rates on all the patches. Thus the in the kinetic expressions, and hence meth- 
assumption of single step control (surface ods of the theory of one component adsorp- 
reaction) can be safely made. tion are readily applicable. 

The present work was undertaken with 
the following specific objectives: (1) to in- 
vestigate the dependence of statistical aver- 
ages like mean coverage and selectivity on 
the nature of the local isotherms, for realis- 
tic values of the heat of adsorption, (2) to 
test the validity of the condensation ap- 
proximation in describing the selectivity be- 
havior, (3) to find appropriate regions of 
pressure for a desired selectivity pattern to 
be realized for various values of the limits 
of heat of adsorption and ratios of surface 
reaction constants, (4) to see whether dis- 
crimination between rival site energy distri- 
butions is possible from experimentally ob- 
served patterns of selectivity behavior for 
all the local isotherms, and (5) to investi- 
gate the consequences of a Polanyi- 
Bronsted type relationship between the ac- 
tivation energy for surface reaction and 
heat of adsorption of the key component. 

Customarily the observed kinetics is ex- 
pressed as a function of the mean surface 
coverage e,. If we assume that the steps A, 
--, B, 2A, --f C exhibit first- and second- 
order kinetics, respectively, with respect to 
the mean coverage eA, then we have 

Kinetic model I 

YB = k,& 

r, = kZtii 

h s,= - 
ki + hot, 

(1) 

(2) 

(3) 

FORMULATION OF THE PROBLEM 

Since our purpose is to analyze the influ- 
ence of surface heterogeneity, mobility, 
and interaction, a simple reaction scheme is 
chosen, viz. 

s2 = 1 - S, (4) 

rs, rc denote the rates; Si , S2 represent the 
selectivities with respect to B and C, re- 
spectively; 4; is the squared mean surface 
coverage of the surface; k, , k2 are averaged 
over the distribution of activation energies2 
existing on the surface and can be thought 
of as mean kinetic constants (see Appendix 
I). Further it is shown that the rate con- 
stants can very well be represented by an 
Arrhenius type relationship 

k = ko exp(-EIRT) (5) 

It should be noted that in model I the 

A, 3 A, -% B, + Products 

2A, 2 C, + Products 

This hypothetical reaction scheme can de- 
scribe most of the steps involved in alcohol 
dehydration to give ether and ethylene (18). 
A more complex example would be en- 
countered in some of the key steps of cata- 
lytic cracking and disproportionation. The 
products are desorbed so fast as to make 
their surface concentrations effectively 

overall rates are expressed as functions of 
e, without explicitly recognizing the exis- 
tence of patches of varying activities on the 
surface. If now we assume that the kinetic 
orders of these reactions on each patch are 
first and second, respectively, it would be 
necessary to invoke the existence of two 
statistical averages 6,) ?Q in writing equa- 

* When there is functional dependence between the 
heat of adsorption and the activation energy for the 
surface reaction as a consequence of the Polanyi- 
Brensted relationship, the results are analyzed in a 
separate section. 
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tions corresponding to Eqs. (3) and (4). 
Thus we have 

Kinetic model II 

s, = _ kl*A 
k,eA + k2c2 

- 

s2 = _ k2eA2 
k,eA + k2c 

(6) 

(7) 

where 

8A = %i(p, T) 

= 
I ‘* @(P, T) 6(Q) dQ (9) 

Ql 

Also 

I ; S(Q) dQ = 1 (10) 

Qi, Q2 denote the limits of the heat of ad- 
sorption. The term &i(p, T) is the local iso- 
therm or the surface coverage on the ith 
patch expressed as a function of tempera- 
ture and pressure. 6, and Q are the mean3 
and mean squared coverages, respectively. 
In Eqs. (l)-(4) for the simple reaction 
scheme I, the rates are expressed directly 
in terms of the mean coverage as this is the 
quantity which is directly measured in an 
experiment. Nevertheless, Eqs. (6) and (7), 
corresponding to the more rigorous reac- 
tion scheme II, have to be used when we 
wish to test the assumption of first- and sec- 
ond-order kinetics for the surface reactions 
on each of the patches. 

Now the problem reduces to finding ex- 
perimental conditions such that a desired 
selectivity pattern is realized. To illustrate 
the theoretical approach, the condition S, 
= S2 is assumed to be ideal in the present 
work. The requirement Si = r S2 where 0 < 
r < 1 does not pose any fresh problems 
(often Si Q or % S2 is the situation sought in 
practice). Combining Eqs. (3) and (4) we 

3 For brevity the pssure and temperature depen- 
dencies of 8,&, T), O,,*(p, ZJ are not shown explicitly. 

get 
&I = &(P, T) = WM (11) 

where & denotes the critical value of 6, at 
which Si = S2 in accordance with kinetic 
model I. 

For kinetic model II we have to use Eqs. 
(6) and (7) to find the conditions for S, = S2. 
Thus we have 

tic2 = (kz/k,) eA2 (12) 

Using Eq. (11) an explicit expression for 
pci, the characteristic pressure at which S1 
= S2, can be derived. For the case denoted 
by Eq. (12), resort to numerical methods is 
necessary to find pC2. It will be shown that 
pC2 and pCl differ considerably from each 
other. As before, by appropriate combina- 
tion of Eqs. (3) and (4) and of Eqs. (6) and 
(7) we can deduce & , pCl and ec2, pC2. 

Incorporation of Surface Heterogeneity 

In order to superimpose the effect of sur- 
face heterogeneity over that of interaction 
between and mobility of adsorbed species, 
we employ statistical averages in the ki- 
netic expressions using Eqs. (8)-(10). We 
have four choices for the 6(Q) appearing in 
these equations. Only these distributions 
are considered because they explain the dif- 
ferential heat variation, are convergent, 
and have often been successfully employed 
with Langmuir-type local isotherms in de- 
scribing adsorption without interactions on 
heterogeneous surfaces. These distribu- 
tions, assumed to be independent of tem- 
perature, are presented in Table 1. Their 
analytical behavior as a function of Q can 
be easily seen from Fig. 1. 

The QM parameter in the distributions is 
chosen such that the differential heat at 
zero coverage (i.e., when p -+ 0) asymptoti- 
cally approaches Q2. A little discussion on 
the choice of the limits of adsorption heat is 
desirable. In many chemisorption systems 
the heat of adsorption varies between 15 
and 30 kcal (19-24). For the hypothetical 
reaction scheme analyzed in the present 
work, the values of the limits chosen are 
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FIG. 1. Site energy distribution function plotted against Q for the limits: Q, = 17, Q2 = 31, QM = 23. 

arbitrary, nevertheless we keep in mind 
that a variation of 14 kcal/mol is not unreal- 
istic for many experimental systems (21- 
24). A different choice would not affect the 
qualitative nature of the conclusions 
drawn. The limits used in the present work 
also have been employed in previous stud- 
ies (25, 26). 

COMPUTATION OF MEAN 8,, Q 

Numerical Method 

Before calculating the statistical averages 
defined by Eqs. (6) and (7) it is necessary to 
evaluate 81i as a function of Q at a given 
pressure. As the local isotherms depend im- 
plicitly on Bri (see Table 1) the local surface 
coverage of the ith patch is numerically 
found by using a repeated interval halving 
method, as a function of the equilibrium 
pressure. The & is determined with a preci- 
sion of 1 in lo6 and the statistical averages 
c, 8, then calculated using Simpson’s rule 
on an ICL 1904 S computer in single preci- 
sion for all the distribution functions. 

The Condensation Approximation 
for eA, G 

An approximate analytical method called 
condensation approximation (henceforth 
denoted CA) has beenused by a number of 
authors to calculate eA (Eq. (8)) for the 
Fowler-Guggenheim local isotherm and 
the Hill-deBoer isotherm (27-29, 31). 
Later a higher order approximation called 
Asymptotically Correct Approximation 
(ACA) (30, 32, 33) was also proposed. We 
restrict our attention in the present work to 
CA. Using ACA involves no additional diffi- 
culties but will not be pursued as CA itself 
gives reasonable values for iA. The use of 
CA results in substantial saving of com- 
puter time, besides giving closed form ex- 
pressions for eA, c. 

In CA we approximate the true local iso- 
therm by the condensation isotherm 

p,(Q) denotes the condensation pressure 
written as a function of condensation heat. 



EFFECTS OF INTERACTION AND MOBILITY ON SELECTIVITY 15 

Essentially it involves replacing the local 
isotherm by a step isotherm (with surface 
coverage equal to unity) at values of pres- 
sure higher than or equal to the condensa- 
tion pressure. However, it may be noted 
that there is no condensation in the real 
sense of the term in chemisorption systems. 
The condensation pressure can be paramet- 
rically related to the condensation heat Qc . 
The surface coverage of each of the patches 
abruptly jumps from zero to unity at the 
condensation pressure pc . 

The simplest way to find the condensa- 
tion pressure involves the use of L2(0, ~0) 
metric space. We choose the pc in such a 
way that the distance between the CA iso- 
therm and the local isotherm is minimum. 
We define the distance in L2 space as (27, 
28) 

d[eCA 3 %O,, T)l 
= 

I om [@i(P, T) - hJ2 dp (144 

ZZ I :’ Q(p, n dp 

+ I Oc [I - &,I2 dp (14b) PC 

For d[B,,{p, T), OcA] to be minimum for the 
given choice of pc the first derivative with 
respect to pc must be zero. This gives 

e,?(p,, n - [ 1 - eli(pc , 012 = 0 (14~) 

Thus 

This result has been shown to hold for any 
continuous local isotherm &(p, T) (28). 
The B&p, T) can also be thought of as a 
continuous function of Q and Eq. (23) can 
be rewritten with 0,; replacing &. By the 
use of equations that define the local iso- 
therms (see Table 1) the condensation heat 
can be obtained as a function of pressure. 
The values of Qcl for various distributions 
and local isotherms are presented in Table 
1. Using the definition given by Eq. (13) we 
have the following analytical approxima- 

tion for the mean coverage 4,: 

We attempt an approximation similar to - 
Eq. (14) for calculating eA2. Proceeding 
through steps similar to Eqs. (14a-d) and 
with the approximation Eq. (13), we obtain 

e1i2hy n = i (16) 

Since OIF(p, ?‘) shows weaker dependence 
on Q when compared to Bli, the expression 
for Qc as a function of pc will be different in 
the present case. The condensation approx- 
imation works well when Qr < Qc, < Q2 and 
Qr < Qc2 < Qz. So only for those values of 
pressure (which are parametrically related 
to Qcl and Qc2) wherein the above inequali- 
ties are satisfied, CA can be safely used for 
calculating c, 8,. For other ranges of 
pressure the numerical method is em- 
ployed. In Table 1 expressions for 8, are 
presented along with the different analyti- 
cal relationships for Qcl as functions of 
pressure.4 

LOCALIZED ADSORPTION WITH 
INTERACTIONS 

For treating the selectivity behavior of a 
heterogeneous surface, Eqs. (3) and (4) or 
Eqs. (6) and (7) are employed along with 
the Fowler-Guggenheim and the quasi- 
chemical isotherm (see Table 1). The statis- 
tical averages are calculated using Eqs. (8), 
(9), and (10). Attractive and repulsive 
forces are taken into account by means of 
the term A occurring in the defining equa- 
tions, i.e., negative for attractive and posi- 
tive for repulsive interactions. In the 
refined quasi-chemical isotherm both 
hexagonal and square lattices can be con- 
sidered by varying the coordination num- 
ber, i.e., z = 6, 4, respectively, for these 
lattices. 

In the present work both through-bond 

4 Qc2 and Qcl can be easily related. Expressions for 
Q can be easily obtained (of the same functional form 
as 6,) by replacing Qcl by Qc2. 
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and through-space interactions (34) as well 
as dipole-dipole interactions have been 
lumped together in a single term A. Grimley 
and Torrini (34) estimate a value of 3-6 
kcaVmo1 for the former type while dipole- 
dipole interactions contribute about 0.7 
kcaVmol(35). Hence a value of +5 kcal for 
the A term is not unreasonable. A lower 
value of A does not affect the qualitative 
nature of the conclusions drawn. 

Figure 2 represents the mean surface 
coverage f?, and the mean squared cover- 
age c as functions of pressure for all the 
distributions for the Fowler-Guggenheim 
local isotherm with repulsive interactions. 
Notice that for two functionally different 
distributions, viz. the constant and the 
skewed Gaussian, the averages eA, c are 
closely matching. The highest values of 8,) 
q are predicted for the positive exponen- 
tial distribution. This is intuitively obvious 
as the fraction of the highest energy sites is 
maximum for the positive exponential dis- 
tribution, and since eti, 8ti2 are monotoni- 

tally increasing with Q the mean values are 
also consequently higher. Since the 6, val- 
ues calculated by CA are very close to 
those computed using the exact numerical 
method, they are not shown separately in 
Fig. 2. 

CA is excellent for approximating 8** 
even for the case of attractive interactions. 
In Table 2 values of c calculated using CA 
are compared with the exact numerical 
method for the Fowler-Guggenheim iso- 
therms with attractive and repulsive inter- 
action terms. The agreement with the nu- 
merical method is poor for the attractive 
case especially at low pressures (3-5% de- 
viation). The c values shown in Fig. 2 are 
calculated by numerical integration. The 
qualitative picture is not changed when we 
consider attractive interactions, only the 
values of pressure get shifted to lower mag- 
nitudes . 

Let us now examine the selectivity pat- 
tern using kinetic model I. To understand 
the fundamental differences in the pressure 

l --TEMKIN-PYZEV I CONSTANT 1 
0.7 x -DUBININ-RADUSHKEVICH I SKEW-GAUSS ) 0.6 
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r" 
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1l-l P 

FIG. 2. Plot of mean surface coverage and mean squared surface coverage against In p for the four 
distributions. The local isotherm is the Fowler-Guggenheim model with repulsive interaction. Q, = 
17, Q2 = 31, QM = 23, A = 5. 
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TABLE 2 

Comparison of 2 Calculated Using the Condensation Approximation and 
Exact Numerical Method for the Fowler-Guggenheim Model 

Pressure 
(Tom) 

Mean squared surface coverage fiA2 for 
the Temkin-Pyzev distribution 

Condensation approximation Exact numerical method 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.010 

Repulsive case, A = 5 
0.418559 
0.468069 
0.497031 
0.517580 
0.533518 
0.546541 
0.557552 
0.567090 
0.575503 
0.583029 

Attractive case, A = -5 
0.594694 
0.644205 
0.673166 
0.693715 
0.709654 
0.722677 
0.733688 
0.743226 
0.751639 
0.759164 

0.425229 
0.473400 
0.503122 
0.523539 
0.539360 
0.552275 
0.563179 
0.572610 
0.580916 
0.588335 

0.569859 
0.619377 
0.648061 
0.667533 
0.684336 
0.698925 
0.707525 
0.718416 
0.727613 
0.733856 

behavior, let us calculate the characteristic 
pressures for all the distributions using Eq. 
(11) for both types of interactions. We can 
make use of the CA expression for eA pre- 
sented in Table 1. The condensation heat is 
lower for the case of attractive interactions. 

All these expressions are derived for the 
condition St = Sz which is chosen here to 
illustrate the role of site-energy distribu- 
tion. These can be very easily extended to 
any other required selectivity pattern St = 
r&,withO<r< lot-r> l.Ascanbeseen 
easily from the above expressions the char- 
acteristic pressure at which Si = Sz is de- 
creased by attractive interactions. Below 
pcl component B is obtained in larger mea- 
sure, while above pcl component C is 
formed at higher rates. The divergence be- 
tween the characteristic pressure values pcl 
is larger for r > 1. 

Figure 3 illustrates a plot of & = (kllk2) 
as a function of pcl for the FG model with 
repulsive interactions. For the parameter 
values chosen, the positive exponential dis- 
tribution gives the lowest and the negative 
exponential distribution the largest values 
of characteristic pressure for a given &. 
Even though the qualitative features of the 
Dubinin-Radushkevich and constant distri- 
butions are different, the values of the char- 
acteristic pressure predicted are closer. 
This is evident from Fig. 3. Except for the 
shift to lower characteristic pressure values 
the curves for the attractive case are similar 
and hence not shown. 

If we wish to predict the characteristic 
pressure pc2 on the basis of kinetic model II, 
then we have to use a different procedure. 
As stated earlier, CA is not very accurate 
for calculating eA2, especially for the attrac- 



BHAT, PRASAD, AND DORAISWAMY 
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FIG. 3. Plot of BC against In pC. The local isotherm is the Fowler-Guggenheim 
repulsive interaction. Q, = 17, Q2 = 31, QM = 23, A = 5. 

model with 

tive interactions Fowler-Guggenheim 
model at low pressure. In principle, by ex- 
pressing eA, OA2 as functions of pressure, 
we can numerically solve for ec2, and pc2. 
However, it is simpler to calculate S1, S2 
using Eqs. (6) to (9) for the four distribu- 
tions. The characteristic pressure can be 
found from the abscissa of the crossover 
point of the plots of S1 , S2 vs pressure. The 
characteristic pressure value for any other 
selectivity can be found by simple interpo- 
lation. 

In Fig. 4, Sr and S2 calculated for kinetic 
models I and II are plotted against pressure 
for k,/k2 = 0.8. The Fowler-Guggenheim 
local isotherm with attractive interactions 
is chosen. All four 6(Q) distributions are 
studied. 

In comparing models I and II we bear in - 
mind that at a given pressure oA2 is always 
higher than &. Thus for identical values of 
kJk2 the overall rates of formation of C will 
be larger in model II in comparison to 
model I. Hence the criterion S, = S2 is sat- 
isfied at a lower pressure (i.e., the charac- 

teristic pressure pC2 < pCl for the same k,l 
k2). Figure 5 gives a similar picture for 
repulsive interactions. 

Refined Treatment of Localized 
Adsorption 

We attempt to study localized adsorption 
with interactions on the basis of the refined 
quasi-chemical isotherm. Both hexagonal 
and square lattices are studied. We use the 
appropriate defining equations from Table 1 
and the condensation approximation. A 
surprising result is that both for the square 
and hexagonal lattices the expressions for 
Q, are identical to that derived earlier for 
the Fowler-Guggenheim isotherm. So in 
order to assess the differences we calculate 
eA, c using the exact numerical method. 
We find very little difference between the 
values calculated (0.5% for 8, and 1.5 to 2% - 
for oA2, see Table 3). Besides, this is appre- 
ciable only at low pressure. Hence selectiv- 
ity behavior of the quasi-chemical isotherm 
is not pursued separately. We conclude that 
refinements in accounting for interactions 
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FIG. 4. Plot of S,, & against In p for the kinetic models I and II. The local isotherm is the Fowler- 
Guggenheim model with attractive interaction. Q, = 17, Q, = 31, Q, = 23, A = -5, k,lkz = 0.8. 
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FIG. 5. Plot of S, , S2 against In p for the kinetic models I and II. The local isotherm is the Fowler- 
Guggenheim model with repulsive interaction. Q , = 17, Q2 = 31, QM = 23, A = 5, k,/k2 = 0.8. 
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TABLE 3 

Mean Surface Coverage for the Fowler-Guggenheim 
and Quasi-chemical Approximation Models Q, = 17 
kcal/mol, Qz = 31 kcal/mol, and Qu = 23 kcal/mol 

Pressure Freundlich Temkin Temkin- Dubinin- 
(Tom) Pyzev Radushkevich 

ii,, Fon der-Guggel nheim, A = 5 
0.01 0.337552 0.451894 0.394052 
0.02 0.383044 0.501487 0.441883 
0.03 0.410457 0.530212 0.470137 
0.04 0.430217 0.550394 0.490240 
0.05 0.445702 0.565911 0.508846 
0.06 0.458447 0.578491 0.518593 
0.07 0.469282 0.589052 0.529363 
0.08 0.478707 0.598142 0.538682 
0.09 0.487049 0.606113 0.546891 
0.10 0.494531 0.613204 0.554225 

8,) Quasi-chemical approximation, A 
0.01 0.339074 0.450431 0.394178 
0.02 0.384547 0.499951 0.441921 
0.03 0.411969 0.528675 0.470151 
0.04 0.431738 0.548863 0.490245 
0.05 0.447231 0.564388 0.505843 
0.06 0.459981 0.576974 0.518584 
0.07 0.470819 0.587541 0.529348 
0.08 0.480246 0.596635 0.538661 
0.09 0.488587 0.604608 0.546864 
0.10 0.496068 0.611701 0.554191 

0.388841 
0.437091 
0.465655 
0.486005 
0.501812 
0.514732 
0.525650 
0.535100 
0.543428 
0.550867 

=5 
0.389271 
0.437354 
0.465846 
0.486149 
0.501921 
0.514811 
0.527503 
0.535130 
0.543435 
0.550855 

have little effect on the selectivity behavior 
for the kinetic models I and II under consid- 
eration. 

Since nearest neighbor and next nearest 
neighbor interactions are shown to be, re- 
spectively, an order of magnitude and 2 or- 
ders of magnitude (36) less than the binding 
energy, they are not considered in the 
present work. We also note that the lattice- 
gas model for the adsorbed state shows 
only qualitative agreement with experi- 
ments (39). 

MOBILE ADSORPTION 

The mobility of adsorbed molecules is 
taken into account by using the mobile 
model similar to the Hill-de Boer iso- 
therm.5 On the basis of CA we find the char- 
acteristic pressure at which Si = &. Even 
though the mobile isotherm is similar to the 
two-dimensional Hill-de Boer isotherm (I, 
5 It is possible to derive an expression for mobile ad- 
sorption through statistical mechanical methods in 
which interaction parameters can be larger than due to 
Van der Waal’s forces alone (38). 

2, IO), the parameters appearing in the de- 
fining equation have a different physical in- 
terpretation. The b. is chosen l/1000 times 
that of the localized adsorption. This value 
of b. is in qualitative agreement with the 
predictions of the absolute reaction rate 
theory (37). The entropy change factor for 
mobile adsorption is smaller than that for 
the localized adsorption. 

As before, the characteristic pressures 
are computed on the basis of CA. The ex- 
pression for pcl are similar to those derived 
for localized adsorption except for a multi- 
plicative factor e’. But since b. is 10m3 times 
less than for the immobile case, the overall 
pcl is much less for the case of mobile ad- 
sorption. Figure 6 gives the respective val- - 
ues of 6, and eA2 for the repulsive case. 
Since the characteristic pressures pcl when 
compared to the localized models are 
shifted only by a constant factor on a semi- 
log plot, they are not shown here. As we 
observed earlier, for the case of localized 
adsorption in kinetic model II, eA2 enters - 
into the selectivity expression and oA2 > 
&. Thus the overall rates of formation of C 
will be larger in model II in comparison to 
model I for fixed kllk2 and consequently the 
characteristic pressure pcl > pcz. If we 
compare the localized and mobile models 
(Figs. 5 and 8) within the framework of ki- 
netic model I, equal selectivity criterion S1 
= S2 can be satisfied only by the mobile 
model for the pressure range studied. In 
contrast to the attractive models (Fig. 7), 
for the repulsive case appreciable surface 
coverage occurs only at higher values of 
pressure. Figure 8 gives the selectivity 
plots for the repulsive case. 

When the values of the characteristic 
pressure are measured from the crossover 
points, any value of characteristic pressure 
to obtain S1 = S2 for a given (kl/k2) ratio can 
be found by interpolation. Thus the operat- 
ing pressure needed to achieve a given se- 
lectivity ratio can be easily determined. 
The site energy distributions show qualita- 
tively the same trends as in the immobile 
case in their selectivity behavior. 
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FIG. 6. Plot of mean surface coverage and mean squared surface coverage against In p for the four 
distributions. The local isotherm is mobile model with repulsive interaction. Q, = 17, Qz = 31, QM = 
23, A = 5. 
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FIG. 7. Plot of S, , S2 against In p for the kinetic models I and II. The local isotherm is mobile 
with attractive interaction. Q, = 17, QZ = 31, QM = 23, A = -5, kllkz = 0.8. 
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FIG. 8. Plot of S, , S2 against In p for the kinetic models I and II. The local isotherm is mobile model 
with repulsive interaction. Q, = 17, Q2 = 31, QM = 23, A = 5, /cl/k2 = 0.8. 

CONSEQUENCES OF A POLANYI-BR@NSTED 
RELATIONSHIP 

In the present section we investigate the 
role of a Polanyi-Bronsted relationship be- 
tween the activation energy and heat of re- 
action for an elementary step. Rather than 
making ad hoc assumptions about the de- 
pendence of activation energy for the sur- 
face reaction on the heat of adsorption, we 
explore the functional relationship arising 
as a consequence of the above relationship. 

To keep the mathematical treatment trac- 
table, we make the assumption that the 
products are held by only Van der Waal’s 
forces and are desorbed fast. Then for the 
A, + B, step we have the enthalpy balance 

AHti + AHSA + AHdB = AH,,, (17) 

Further the magnitude of heat of desorption 
of B is assumed to be essentially constant. 
A&A 7 AHsA, AHda, AHov denote the heat 
of adsorption of A, heat of surface reaction, 
the desorption heat of the product B, and 
heat of overall reaction, respectively. As 

AHaA becomes more negative, since AHO” is 
constant, AHSA becomes less and less nega- 
tive. If a Polanyi-Bronsted relationship is 
assumed between heat and activation en- 
ergy of surface reaction we have finally for 
the ith patch: 

Ei = EO + 4Q - Qo> (18) 

where Ei is the activation energy of the sur- 
face reaction on the ith patch, E. that of the 
reference patch, etc. (-AHaA = Q). As a 
consequence of the Polanyi-Bronsted rela- 
tion the rate on the ith patch [Eq. (l)] gets 
multiplied by a term exp(-aQ), together 
with some arbitrary constants. 

If we consider a compensation type rela- 
tion, then we have the result: 

ASi = C,Ei + CO (19) 

where ASi, ZSi denote the entropy of activa- 
tion and activation energy for surface reac- 
tion. 

The net result is that the rate term gets 
multiplied by a term exp[CiaQ - uQ1 to- 
gether with some constants. In our compu- 
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tations RT = 1 kcal/mol, Cia = 0.13244 
deg-‘, a = 0.25. It has been shown that 0 < 
a < 1 (40), and for C1 we use a representa- 
tive value reported in the literature (42). 
For simplicity the Polanyi-Bronsted pa- 
rameters have been chosen the same for 
both first- and second-order rates. 

The net result will be that when Polanyi- 
Bronsted relationship is valid the rates 
show a fall compared to the case when such 
a relationship does not exist. 

The condensation approximation can be 
used even when Polanyi-Bronsted relation- 
ship and compensation effects are opera- 
tive. For this purpose we redefine the site- 
energy distribution as 

a’( (3) = 6(Q) exp[C, uQ - uQ/RT] (20) 

and Eq. (15) becomes 

” rB = I S’(Q) dQ Cb (21) QCI 

where C, is a lumped constant containing 
several temperature-dependent constants. 

In Fig. 9 we show S, , S2 plots for the FG 

. 
Y 
‘r 

.6- 

.5- 

,4 - 
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isotherm when such relationships hold good. 
Notice clearly, the shift of characteristic 
pressures to higher values. It is possible to 
derive expressions for characteristic pres- 
sure but it is not being presented here. 

Since the introduction of the Polanyi- 
Bronsted and compensation effects calls for 
at least four additional parameters, the 
physical picture is obscured, especially the 
role of interactions and mobility. Therefore 
we attempt to show it only as an illustration 
in this section in contrast to the previous 
sections. 

SUMMARY AND CONCLUSIONS 

Using the random patch model of the het- 
erogeneous surface the effects of interac- 
tion between and mobility of adsorbed mol- 
ecules on the selectivity behavior of a 
simple parallel reaction scheme (viz. alco- 
hol dehydration) is analyzed in the present 
work. 

Both localized and mobile adsorption are 
considered. The Fowler-Guggenheim iso- 

s . FREUNDLICH 
. TEMKlN 

0 TEMKIN-PYZEV 
I DUBININ-RADUSHKEVICH 

-4.7 -2.4 -0.1 

FIG. 9. Plot of S,, Sz for Fowler-Guggenheim model with repulsive interaction, when Polanyi- 
Brensted and compensation effects are taken into account. The kinetic model employed is model II. Q, 
= 17, Q, = 31, QM = 23, k,lkz = 0.8, A = 5. 



24 BHAT, PRASAD, AND DORAISWAMY 

therm and the quasi-chemical isotherm are 
the local isotherms chosen (which describe 
equilibrium on each of the patches), for de- 
scribing localized adsorption with interac- 
tions. For mobile adsorption the Hill-de 
Boer isotherm is employed. The mean rates 
of the surface reactions are calculated as 
statistical averages over four well-known 
site energy distributions. 

Since the local isotherms have implicit 
dependence on the adsorption energy, an 
exact numerical method is used to calculate 
the statistical averages of interest, and the 
values are compared with that deduced by 
the condensation approximation (CA). 
While CA has the advantage of yielding ex- 
plicit analytical expressions for the selec- 
tivity, in general the agreement between c 
values calculated using the numerical 
method and CA deviate by up to 5%. On 
the other hand, it is an excellent approxi- 
mation for calculating 8, (1% deviation). 

Methods are given for deducing a charac- 
teristic pressure such that the desired selec- 
tivity Sr = r& is obtained. This can be re- 
lated to the kinetic constants and the 
parameters characterizing the site energy 
distribution. 

It appears that refinements in describing 
localized adsorption have negligible influ- 
ence on the values of the characteristic 
pressure, as the Fowler-Guggenheim and 
the quasi-chemical isotherms give rise to 
the same values. Further the divergence be- 
tween selectivity predictions are most 
marked between the positive exponential 
distribution and the negative exponential 
distribution. The skewed Gaussian distribu- 
tion and the constant distribution show the 
same selectivity pattern. 

For the mobile adsorption entropy 
change factor b,, is chosen approximately 
10m3 of the localized adsorption. The ana- 
lytical expressions for the characteristic 
pressure are similar to that of localized ad- 
sorption, but the numerical magnitudes are 
much smaller. 

We have also explored the relationship 
between activation energy for surface reac- 

tion and the heat of adsorption arising as a 
result of the Polanyi-Bronsted relationship 
between activation energy and enthalpy 
change of an elementary step. The pres- 
sure-dependent parts of the rates show ap- 
preciable fall compared to the case when 
statistical independence is assumed be- 
tween the activation energy and the heat of 
adsorption. Besides, the characteristic 
pressure gets shifted to higher values. 

APPENDIX I 

Derivation of Mean Kinetic Constants 

We consider in this section the derivation 
of mean kinetic constants assuming the sta- 
tistical independence of the distributions 
characterising the activation energy for sur- 
face reaction 6E(E) and the heats of adsorp- 
tion, 6(Q). 

The contribution of those sites on which 
activation energies lie between E and E + 
dE and heats between Q and Q + dQ to the 
rate ra is given by 

drdE,C?l 
= kl”e-E’RrO&, T) 6E(E) 6(Q) dQ (Al) 

So the mean rate ra is given by 

h4E) a(Q) dE dQ W) 

Using the property of statistical indepen- 
dence of 6E(E), 6(Q), we have 

t=B = klo& Z(E, , E2) (A3) 

where Z(El, E2) represent the integral of 
exp(-EIRT) &(E) with limits El, E2. 

For making the mathematics as simple as 
possible, we assume &(E) to have similar 
functional form as 6(Q). Thus for the nega- 
tive exponential distribution 6E(E) we have 

Z(El , E2) = CN ff exp( -E/RT) 

exp( - cE) dE 
= CL RT {exp[-(EJRT)(l + c)] 

-ew[- WRT)U + c)l} (A4) 

where CN denotes a normalization con- 
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stant. In actual applications El % El. So the 
second term can be safely neglected in 
comparison with the first. So we obtain 

W, , Ed 
= CL RT exp[-(E1/RT)(l + c)] (A5) 

Substituting (A5) in (A3) we finally get an 
expression similar to Eq. (1). 

Similarly for the positive exponential dis- 
tribution and the constant distribution for 
i&(E) mean kinetic constants can be readily 
derived and expressed in the Arrhenius 
form given by Eq. (5). 

APPENDIX 2 

Nomenclature 

gas-phase reactant 
reactant adsorbed on the site 
site on the surface 
adsorption and desorption rate 

constants 
rate constants for reactions 1 

and 2 
rates of formation of products B 

and C 
mean surface coverage 
mean square surface coverage 
selectivities for B and C 
rate constant 
frequency factor 
activation energy 
pressure 
temperature 
gas constant 
surface coverage as a function 

of pressure and temperature 
surface coverage on the ith 

patch as a function of pres- 
sure and temperature 

site energy distribution function 
critical value of mean surface 

coverage 
critical value of mean surface 

coverage in model II 
critical value of mean surface 

coverage as a function of 

PC1 7 PC2 

QM 

@i 

bo 

Q 
A 
z 
Ql, Q2 

&A 

PA Q> 
B, C 

QC 

1. 

2. 

3. 

4. 

5. 
6. 
7. 

8. 

9. 

IO. 

11. 

12. 

13. 

14. 
15. 

16. 
pressure and temperature 17. 

characteristic pressures for 
model I and II 

parameter defining differential 
heat at zero coverage 

surface coverage on the ith 
patch 

entropy change factor at half 
coverage 

heat of adsorption 
interaction parameter 
coordination number 
lower and upper limits of heat 

of adsorption 
condensation local isotherm 
condensation pressure 
products 
condensation heat 
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